IV) So(4)-bundles are isomorplici
\Leftrightarrow
$w_{2} p_{1}$ e agree
exercise: prove the above
I) "easy" II) "easyish"
III), II) harder
B. Characteristic classes
another way to think of Steifel-Whitney classes
Th ${ }^{m}$ 5:
Ba unique function

$$
w_{i}: \operatorname{Vect}(\mu) \rightarrow H^{i}(\mu ; \mathbb{Z} / 2) \forall M
$$

satisfying

1) $w_{i}\left(f^{*} E\right)=f^{*} w_{i}(E) \quad \forall f: M \rightarrow N$
2) $w_{0}(E)=1, w_{i}(E)=0 \quad \forall i>$ fiber dam E
3) $w\left(E_{1} \oplus E_{2}\right)=w\left(E_{1}\right) \cup w\left(E_{2}\right)$
where $w\left(E_{i}\right)=1+w_{1}\left(E_{i}\right)+w_{2}\left(E_{i}\right)+\ldots$
4) $\omega_{1}\left(\gamma_{n}\right) \neq 0$ where γ_{n} is the universal line bundle oven $\mathbb{R} P^{n}$
for 3) $E_{1} \oplus E_{2}$ is called the direct sum of E_{1} and E_{2} and has fiber the direct sum of the fibers of E_{1} and E_{2}
formally it is defined as follows given $\mathbb{R}^{n} \rightarrow E_{1}$ and $\mathbb{R}^{m} \rightarrow E_{2}$ \downarrow L
we clearly get $\mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow E_{1} \times E_{2}$ $\stackrel{\downarrow}{M \times N}$
If $M=N$ and $\Delta: M \rightarrow M \times M: m \mapsto(m, m)$
then $E_{1} \oplus E_{2}=\Delta^{*}\left(E_{1} \times E_{2}\right)$
exercise: if $\left\{U_{\alpha}\right\}$ is a cover of M giving local trivializations of E_{1} and E_{2} with transition functions $\left\{\tau_{\alpha \beta}\right\}$ and $\left\{\tau_{\alpha, \beta}^{\prime}\right\}$ then the transition functions for $E_{1} \oplus E_{2}$ are

$$
\begin{aligned}
\tau_{\alpha} \oplus \tau_{\alpha \beta}^{\prime}: U_{\alpha} \cap U_{\beta} & \rightarrow G L(n+m ; \mathbb{R}) \\
& x \longmapsto\left(\begin{array}{cc}
\tau_{\alpha \beta}(x) & 0 \\
0 & \tau_{\alpha \beta}^{\prime}(x)
\end{array}\right)
\end{aligned}
$$

for 4) recall $\gamma_{n}=\left\{(l, v) \in \mathbb{R P}^{n} \times \mathbb{R}^{n+1}: v \in l\right\}$
exercise: γ_{n} is a line bundle oven $\mathbb{R} p^{n}$
4) $\Rightarrow \omega_{1}\left(\gamma_{n}\right)$ generates $H^{\prime}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right)$ for all n
note: $\mathbb{R} P^{\prime} \hookrightarrow \mathbb{R} P^{2} \hookrightarrow \ldots \hookrightarrow \mathbb{R} P^{n}$
let $\mathbb{R} P^{\infty}=\underset{n}{\lim } \mathbb{R} P^{n}=\bigcup_{n} \mathbb{R} P^{n}$
we also get γ oven $R P \infty$ and 4$) \Rightarrow w_{1}(\gamma) \neq 0$
exercsé:

1) using $i: \mathbb{R} P^{n} \longrightarrow \mathbb{R} P^{m}$ we hove

$$
\imath^{*}\left(\gamma_{m}\right)=\gamma_{n}
$$

so if $\omega_{1}\left(\gamma_{1}\right) \neq 0$ then true $\forall \gamma_{n}$
2) show $\mathbb{R} P^{\prime}=S^{\prime}$ and $\gamma_{1}=$ infinite Molbois band
$\mathbb{R} \rightarrow \gamma$,
${ }^{\downarrow}$, is non-orientable bundle
so from above $w_{1}\left(\gamma_{1}\right) \neq 0$
note: We have already shown w_{i} satisfies 1), 2), 4) so to prove theorem just need 3) \& uniqueness before we do this let's consider some consequences!
easy consequences:

1) if E_{1} and E_{2} are isomorphic then

$$
w_{i}\left(E_{1}\right)=w_{i}\left(E_{2}\right) \quad \forall_{i}
$$

(by property 1))
2) if E is a trivial bundle then

$$
w_{1}(E)=0 \quad \forall_{i}>0
$$

(this follows from obstruction definition, but also from 1) since if $E \rightarrow M$ trivial, then let $f: \mu \rightarrow\left\{x_{0}\right\}$ and we hove $E=f^{*}\left\{x_{0} \times \mathbb{R}^{n}\right\}$
so $\left.w_{i}(E)=f^{*} w_{i}\left(x_{0} \times \mathbb{R}^{n}\right)=0 \quad \theta_{2}>0\right)$
3) if E^{\prime} is trivial and E is any bundle then

$$
w_{i}\left(E \oplus E^{\prime}\right)=w_{i}(E)
$$

Recall Whitney proved that any n-manifold embeds in $\mathbb{R}^{2 n}$ and immerses in $\mathbb{R}^{2 n-1}$
Th" ${ }^{\text {m }}$:
If $\mathbb{R} P^{2^{n}}$ can be immersed in $\mathbb{R}^{2^{n}+k}$,
then k must be at least $2^{r}-1$
so Whitney's th ${ }^{m}$ cant se improved for all manifolds!
note: If $f: M^{n} \rightarrow \mathbb{R}^{k}$ is an embedding, then we have the normal bundle $\nu(M)$ to $f(M)$

$$
V(M)=\left\{v \in T_{x} \mathbb{R}^{k} \mid v \perp T_{x} \mu, x \in M\right\}
$$

and $\left.T M \oplus \nu(M) \cong T \mathbb{R}^{k}\right|_{M}=M \times \mathbb{R}^{k}$ trivial bundle
exercise: Show $v(M)$ well-defined if f just
an immersion and still hove

$$
T M \oplus \nu(M)=f^{*} T \mathbb{R}^{k}=M \times \mathbb{R}^{k}
$$

so to prove theorem we first study the S-W classes of E and E^{\prime} sit $E \oplus E^{\prime}=$ rival bund
so $w(E) \cup w\left(E^{\prime}\right)=w($ trivial $)=1$

$$
\begin{aligned}
\therefore w\left(E^{\prime}\right)= & (w(E))^{-1} \\
= & \left(1+\left(w_{1}(E)+w_{2}(E)+\ldots\right)\right)^{-1} \\
= & \left(1-(1+x)^{-1}=1-x+w_{1}^{2}(E)+w_{2}(E)+\ldots\right)+\left(w_{1}(E)+w_{2}(E)+\ldots\right)^{2} \\
& \left.-\left(w_{1}(E)+w_{2}(E)+\ldots\right)^{3}-\ldots\right) \\
= & 1-\underbrace{w_{1}(E)}_{\text {order }}+\underbrace{}_{\text {order }}{ }^{\left(w_{1}^{2}(E)-w_{2}(E)\right.}) \\
& +\left(-w_{1}^{3}(E)+2 w_{1}(E) \cup w_{2}(E)-w_{3}(E)+\ldots\right.
\end{aligned}
$$

so $w_{1}\left(E^{\prime}\right)=-w_{1}(E)$

$$
\begin{aligned}
& w_{2}(E)=w_{1}^{2}(E)-w_{2}(E) \\
& w_{3}(E)=-w_{1}^{3}(E)+2 w_{1}(E) 0 w_{2}(E)-w_{3}(E)
\end{aligned}
$$

example: $S^{n} \subset \mathbb{R}^{n+1} \quad \nu\left(S^{n}\right)=S^{n} \times \mathbb{R}$
so $w\left(T S^{n}\right)=\left(w\left(v\left(s^{n}\right)\right)\right)^{-1}=1$
ne. $w_{1}\left(T S^{n}\right)=0 \quad \forall i>0$ we knew for $i \neq n$ since
so cant distinguish TS" from $s^{n} \times \mathbb{R}^{n}$ using $s-w$ classes
(but note, eg. T S^{2} not trivial since if has no non zero section) recall $H^{i}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) \cong \begin{cases}\mathbb{Z} / 2 & 0 \leq i \leq n \\ 0 & 0\end{cases}$
in fact $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[a] /\left\langle a^{a+1}=0\right\rangle$
\uparrow polynomials en a w/ coff in $z / 2$ and $a^{k}=0$ for $k>n$
lemma 7:

$$
\begin{aligned}
W\left(T \mathbb{R} P^{n}\right)= & (1+a)^{n+1}=1+\binom{n+1}{2} a+\binom{n+1}{2} a^{2}+\ldots+\binom{n+1}{n} a^{n} \\
& \text { in } H^{*}\left(\mathbb{R} P^{n} ; z / 2\right)
\end{aligned}
$$

examples: $w\left(T \mathbb{R} p^{2}\right)=1+a+a^{2}$

$$
\begin{aligned}
& W\left(T R p^{3}\right)=1 \quad\left(1+4 a+6 q^{2}+4 a^{3}\right) \\
& W\left(\tau \mathbb{R} p^{4}\right)=1+a+a^{4}
\end{aligned}
$$

Cor $8:$
$w\left(T \mathbb{R} P^{n}\right)=1 \Leftrightarrow n+1$ is a power of 2
so if $n+1$ not a power of 2 then $\mathbb{R} P^{n}$ is not trivial

Proof:
recall modulo $2(a+b)^{2}=a^{2}+b^{2}$

$$
\therefore(1+a)^{2^{r}}=1+a^{2^{n}}
$$

so if $(n+1)=2^{2 r}$ then

$$
w\left(T \mathbb{R} P^{n}\right)=(1+a)^{n+1}=1+a^{n+1}=1
$$

If $n+1=2^{\prime} m$ with m odd $m>1$, then

$$
\begin{aligned}
w\left(T \mathbb{R} P^{n}\right) & =(1+a)^{n+1}=\left((1+a)^{2 r}\right)^{m} \\
& =\left(1+a^{2 r}\right)^{m}=1+m a^{2 r}+\frac{m(m-1)}{2} a^{2-2^{n}}+\ldots \\
& \neq 1
\end{aligned}
$$

to see last equality recall $\binom{n+1}{i}$ is given by Pascals triangle

Remark: only $\mathbb{R} P^{\prime}, \mathbb{R} P^{3}, \mathbb{R} P^{7}$ are trivial
Proof of Th ${ }^{\text {M }} 6$ given lemma 7:
if n is a power of 2 then as above $\binom{n}{1}$ is

$$
\begin{gathered}
10 \ldots 01 \\
\text { so }\binom{n+1}{i} \text { i } 110 \ldots 011 \\
\therefore w\left(\operatorname{TR} p^{n}\right)=(1+a)^{n+1}=1+a+a^{n}
\end{gathered}
$$

one may easily check

$$
\left(w\left(\operatorname{TR} P^{n}\right)\right)^{-1}=1+a+a^{2}+\ldots+a^{n-1}
$$

thus if there is an immersion of $\mathbb{R}^{2^{r}}$ in $\mathbb{R}^{2^{r}+k}$ then $w\left(\nu\left(\pi \rho^{2 r}\right)\right)=1+a+\ldots+a^{2^{r}-1}$ so din of fibers of $R P^{2^{r}}$ es at least $2^{r}-1$ but this is k
we are left to prove lemma 7 for this recall

$$
\gamma_{n}=\left\{(l, v) \in \mathbb{R} P^{n} \times \mathbb{R}^{n+1}: v \in l\right\}
$$

so $\gamma_{n}^{\perp}=\left\{v \in\{x\} \times \mathbb{R}^{n+1} \mid v \perp\left(\gamma_{n}\right)_{x}\right.$ for $\left.x \in \mathbb{R} P^{n}\right\}$ now $w\left(\gamma_{n}^{1}\right)=\left(w\left(\gamma_{n}\right)\right)^{-1}=(1+a)^{-1}=\left(1+a+\ldots+a^{1}\right)$
lemma 9:

$$
T \mathbb{R} P^{n} \cong \operatorname{Hom}\left(\gamma_{n}^{\prime}, \gamma_{n}^{\perp}\right)
$$

Proof: recall \exists an involution $i: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}: x \mapsto-x$ and $\mathbb{R} P^{n}=S^{n} / x \sim i(x)$
so q ! $S^{n} \rightarrow \mathbb{R} P^{n}$ is a 2 -fold cover with deck transform i
note: $d q_{x}(v)=d_{q_{-x}}(-v)$
since $i(x)=-x$ and $d_{i}^{\prime}(v)=-v$

\therefore tangent vectors to $\mathbb{R} \rho^{n}$ are the same as pairs $\left\{(x, v),\left(-x_{i}-v\right)\right\}$ with $x \cdot x=0$ and $x \cdot v=0$
let $l=\operatorname{span}(x)$
the pair above is determined by a linear map

$$
f: L \rightarrow L^{\perp}
$$

(given $v \in L^{\perp}=T_{x} S^{n}$ then $f: L \rightarrow L^{\perp}: x \rightarrow v$ get same map of you take $-v \in L^{\perp}=I_{-x} S^{n}$ and given $f: L \rightarrow L^{\perp}$ let x be a unit et in L and $v=f(x)$ this giver a well-defined $\left\{(x, v),\left(-x_{1}-v\right)\right\}$ in $\tau\left(x, P^{n}\right)$
so clearly $\tau_{g(x)} \mathbb{R} \rho^{n} \cong \operatorname{Hom}\left(\gamma_{n}, \gamma_{n}^{\perp}\right)$
exencesie: Show this works on the level of bundles too
Hint: Consider local trivializations
Proof of lemma 7: from lemma 9 we see

$$
\operatorname{TRP} P^{n} \cong \operatorname{Hom}\left(\gamma_{n}, \gamma_{n}^{\perp}\right)
$$

now note Hon $\left(\gamma_{n}, \gamma_{n}\right)$ is a line bundle oven $\mathbb{R} P^{n}$ and $\sigma: \mathbb{R} \rho^{n} \rightarrow$ Hon $\left./ \gamma_{n}, \gamma_{n}\right): x \mapsto i d:\left(\gamma_{n}\right)_{x} \rightarrow\left(\gamma_{1}\right)_{x}$ is a non zero section
exercise: So $\operatorname{Hom}\left(\gamma_{n}, \gamma_{n}\right) \cong \mathbb{R} P^{n} \times \mathbb{R}$
(in general a rank n vector bundle E oven M is trivial $\Leftrightarrow \exists n$ sections S_{1}, \ldots, S_{n} St. $s_{1}(x), \ldots, s_{n}(x)$ spans E_{x} for all $\left.x \in M\right)$
exercise: $\operatorname{Hom}\left(\gamma_{n}, \gamma^{\perp}\right) \oplus \operatorname{Hom}\left(\gamma_{n}, \gamma_{n}\right) \cong \operatorname{Han}\left(\gamma_{n}, \gamma_{n}^{\perp} \oplus \gamma_{n}\right)$
$\therefore \operatorname{Hom}\left(\gamma_{n}, \gamma_{n}^{\perp}\right) \oplus \varepsilon_{1}=\operatorname{Hom}\left(\gamma_{n}, \gamma_{n}^{\perp} \oplus \gamma_{n}\right)$
trivial rank) trivial rank nut
bundle is bundle
exercise:

1) $\operatorname{Hom}\left(\gamma_{n}, \varepsilon^{n+1}\right) \cong \operatorname{Hom}\left(\gamma_{n}, \varepsilon^{\prime}\right) \oplus \ldots \oplus \operatorname{Hon}^{\left(\gamma_{n}, \varepsilon^{\prime}\right)}$
2) $\operatorname{Hom}\left(\gamma_{n}, \varepsilon^{\prime}\right) \cong \gamma_{n}$

Hint: fix a metric on γ_{n} define $\phi_{g}: \gamma_{n} \rightarrow \operatorname{Hom}\left(\gamma_{n}, \varepsilon^{\prime}\right)$

$$
v \longmapsto g\left(v_{j} \cdot\right)
$$

thus $\mathbb{T} \mathbb{R}^{n} \cong \underbrace{\gamma_{n} \oplus \ldots \oplus \gamma_{n}}_{n+1 \text { times }}$
and property 3) in T_{h} m 5 gives

$$
w\left(T \mathbb{R} P^{n}\right)=\left(w\left(\gamma_{n}\right)\right)^{n+1}=(1+a)^{n+1}
$$

Bounding Manifolds (all manifolds connected) given a closed manifold M of dimension n and nonnegative integers $i_{1} \ldots i_{k}$ st. $i_{1}+\ldots+\eta_{k}=n$ then $w_{i,}(T M) \cup \ldots \cup w_{k}(T M)$ is in $H^{n}\left(M_{j} \mathbb{Z} / 2\right)$
recall from alge braci to pology $H_{n}(M, Z / 2) \cong \mathbb{Z} / 2$ let $[M]$ be a generator (called fundamental class)
we call $\left.W_{1_{1}}(T M) \cup \ldots \cup \tau_{n}(T M)(\Sigma M]\right) \in \mathbb{Z} / 2$
a Steifel-Whitney number of M
exencrie: the steifel-Whitney numbers of
$\mathbb{R} P^{2}$ are 1 and 0
$\mathbb{R}^{P^{3}}$ are 0
$\mathbb{R} P^{n}$ are?
Th ${ }^{\text {m }}$ 10: Pontrjagin
If M is the boundary of a compact manifold W then all the Steifel - Whitney numbers are zero
example: So $\mathbb{R} \rho^{2}$ does not bound any compact 3 -manifold (oriented or not)!
and if Σ is any oriented surface since $\Sigma=2 m^{3}$ we have all Steifel-whitney
numbers are zero
Proof: recall we have a fundamental class

$$
[w] \in H_{n+1}(w, M) \quad \text { and }[M] \in H_{1}(M)
$$

moreover in L.E.S. of pair

$$
\begin{aligned}
& H_{n+1}(w, \mu) \xrightarrow{\partial} H_{n}(\mu) \\
& {[w] }\longmapsto \mu]
\end{aligned}
$$

and in cohomology we hove

$$
H^{n}(M) \xrightarrow{\delta} H^{n+1}(\omega, \mu)
$$

and for $\alpha \in H^{n}(M)$ generalize Stokes Th - .

$$
\delta \alpha[n]=\alpha(\partial[n]) \quad \forall[n] \in H_{n+1}(w, M)
$$

now fixing a Riemannian metric on W we see

$$
\nu(M)=M \times \mathbb{R}=\varepsilon_{M}^{\prime}
$$

so $T W l_{M} \cong T M \oplus \varepsilon_{M}^{\prime}$
so $w\left(\tau \omega /_{\mu}\right)=w(\tau \mu)$
2.e. $\imath^{*}(w(T W))=w(\tau \mu) \quad i: M \rightarrow W$ inclusion
the L.E.S. of a pair gives

$$
H^{n}(W) \xrightarrow{2^{*}} H^{n}(M) \xrightarrow{\delta} H^{n+1}(W, M)
$$

so for any $w_{1}, \ldots w_{2}$ sit. $w_{1}, \ldots \cup w_{1_{k}} \in H^{n}(w)$ we have

$$
\begin{gathered}
\delta\left(w_{1_{1}} \cup \ldots v w_{1_{k}}\right)=0 \\
\therefore \quad w_{1_{1}} \cup \ldots v w_{1_{k}}([m])=w_{1_{1}} \cup \ldots v w_{1_{k}}(\partial[w]) \\
=\delta\left(w_{1_{1}} \cup \ldots v w_{1_{k}}\right)([w])=0
\end{gathered}
$$

so all Steifel-Whitney numbers are 0

Fact (Thou):
If all steifel-Whitney numbers of M are O then M is the boundary of some compact smooth manifold!
given 2 unoriented manifolds M_{1} and M_{2} we say they are unoriented cobordant if \exists a compact manifold W with $\partial \omega=M_{1} \cup M_{2}$ Corollary of Fact:
M_{1} and M_{2} are unoriented cobordant \Leftrightarrow
they have the same Steifel-Whitney numbers

Proof of Th프 5: recall we only need to check Item 3) and uniqueness

We start with uniqueness:
recall we have the universal line bundle γ_{n} oven $\mathbb{R} P^{n}$

$$
\gamma_{n}=\left\{(l, v) \in \mathbb{R} P^{n} \times \mathbb{R}^{n+1}: v \in l\right\}
$$

and γ oven $\mathbb{R P}^{\infty}$
note 4) and 2) determine $\omega_{i}(\gamma)= \begin{cases}1 & 2=0 \\ a & i=1 \\ 0 & 2>1\end{cases}$
in the next subsection we will show:
if $\underset{M}{E}$ is a line bundle over M a paracompact space
then \exists a map $f: M \rightarrow \mathbb{R} \rho^{\infty}$
such that $f^{*}(\gamma)=E$
(we will show much more!)
$\therefore 1)($ and 2), 4) $) \Rightarrow$ we know $w(E)$ for any line bundle!
we can now finish uniqueness by
$\frac{\text { Lemma II (Splitting Principle): }}{E}$
given ${ }_{\mu} p$ there exists a space A and $\operatorname{map} f: A \rightarrow M$ s.t.

1) $f^{*} E$ is a direct sum of line bundles
2) $f^{*}: H^{*}(M) \rightarrow H^{*}(A)$ is infective
since $w(E)$ is determaied by $w\left(f^{*}(E)\right)$ and $w\left(f^{*}(E)\right)$ is determined by 1$\left.)-\psi\right)$ we are done with uniqueness!
exencise:1)show $w\left(E \oplus E^{\prime}\right)=w(E) \cup w(E)$ is true for line bundles
3) show this + lemmall $\Rightarrow 3)$ in $\pi^{m} 5$

Proof of lemma 11:
induct on the dimension of the fiber of $p: E \rightarrow M$ dim $=1$: nothing to show
dimi=2: let $P(E)=$ projective bundle of $E, f: P(E) \rightarrow M$ 1.. is each fiber of \in replace \mathbb{R}^{2} with $\mathbb{R} p^{\prime}$ note: the transition maps $\tau_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(2 ; \mathbb{R})$ act on $\mathbb{R} P^{\prime}$ too
So to E there is an associated $\pi \rho^{\prime}$-bundle

$$
P(E)=\left\{\text { lines in } E_{x} \mid \forall x \in M\right)
$$

so $S^{\prime} \rightarrow \begin{aligned} P(E) \\ \downarrow \\ M\end{aligned}$ now consider $f^{*} E=\{(l, v) \in P(E) \times E: \pi(l)=\rho(e)\}$
let $\gamma_{1}=\left\{(l, v) \in P(E) \times E: \begin{array}{c}\pi(l)=\rho(E) \\ v \in l\end{array}\right\}$
exenuse: this is a line bundle oven $P(E)$

$$
\gamma_{1}^{\perp}=\{(l, r) \in f * E: r \perp e\}
$$

so $\pi^{*} E \equiv \gamma_{1} \oplus \gamma_{1}^{\perp}$
later we will see (maybe) $H^{*}(P(E))$ is a free $H^{*}(M)$-module via $f^{*}(\alpha)$ u.

$$
f^{*}: H^{*}(M) \rightarrow H^{*}(P(E))
$$

is injective
now for $n>2$ let $p: E \rightarrow M$ be an \mathbb{R}^{n}-bundle an $f: P(E) \rightarrow M$ be $\mathbb{R} P^{n-1}$-bundle oven M
then as above $f^{*} E=\gamma \oplus \gamma^{\perp}$
but now by induction $\exists \bar{f}: A \rightarrow P(E)$
st $\bar{f}^{*} \gamma^{\perp}=\oplus$ lie bundles (by induction)
and $\bar{f}^{k}: H^{*}(M) \rightarrow H^{*}(A)$ injèctive
so $(\bar{f} \circ f)^{*} E=\oplus$ line bundles
and $(\bar{f} \text { of })^{*}: H^{*}(M) \rightarrow H^{*}(A)$ infective

Remark: so we have seen Steifel-Whitney classes can be used to

1) obstruct k-frames over varios skeleta.
2) say when we can reduce the structure group egg. $w_{1}(E)=0 \Leftrightarrow$ structure group reduces from $O(n)$ to $S O(n)$
3) differentiate bundles
4) obstruct insmarsions and embeddirigr
5) obstruct bounding a compact nfl.
there are many more applications and similarly for $c_{i}(E)$ and $p_{i}(E)$
example:
If Pantrjagin numbers not 0 then
6) no orientation reversing diffeomorphisus and
7) does not bound an compact oriented mfd eg. $\mathbb{C} P^{2 n}$ has no or n reversing differ. and does not bound an oriented mfd
note: can prove both these with intersection pairings (eg. Poincaré duality)
C. Classifying Spaces

Recall $G_{n, m}=$ all n-din' l subspaces in \mathbb{R}^{m}
we have $G_{n, m} \subset G_{n, m+1}$
so $G_{n}=\bigcup_{m} G_{n, m}$

