II) SO(4)-bundles are isomorphic Wripi, e agree

B. Characteristic classes

another way to think of Steifel-Whitney classes 74 <u></u>5: I a unique function $W_i: Vect(M) \rightarrow H^{2}(M; \mathbb{Z}_{2}) \forall M$ Satistying $i) w_{i}(f^{*}E) = f^{*} w_{i}(E) \quad \forall f: M \rightarrow N$ z) $W_0(E) = 1$, $W_1(E) = 0$ $\forall i = fiber dum E$ 3) $W(\mathcal{E}_{1}\oplus\mathcal{E}_{2}) = W(\mathcal{E}_{1}) \cup W(\mathcal{E}_{2})$ where $W(E_{1}) = (+W_{1}(E_{1}) + W_{2}(E_{1}) + ...$ 4) w, (r) = 0 where r is the universal line bundle over RP"

for 3) $E_1 \oplus E_2$ is called the direct sum of E_1 and E_2 and has fiber the direct sum of the fibers of E_1 and E_2

for mally it is defined as follows
given
$$\mathbb{R}^{n} \rightarrow \mathbb{E}_{i}$$
 and $\mathbb{R}^{m} \rightarrow \mathbb{E}_{z}$
 M
 $We cleanly get $\mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{E}_{i} \times \mathbb{E}_{z}$
 $M \times N$
if $M = N$ and $\Delta: M \rightarrow M \times M: m \mapsto (M, m)$
 $Hen \in \mathbb{E}_{i} \oplus \mathbb{E}_{z} = \Delta^{*} (\mathbb{E}_{i} \times \mathbb{E}_{c})$
enercise: if $\{U_{k}\}$ is a cover of M giving
local trivializations of \mathbb{E}_{i} and $\{\mathcal{T}_{k,k}^{i}\}$
 $Hen Hie$ transition functions $\{\mathcal{T}_{k}\}$ and $\{\mathcal{T}_{k,k}^{i}\}$
 $Hen Hie$ transition functions for
 $\mathbb{E}_{i} \oplus \mathbb{E}_{z}$ are
 $\mathbb{K}_{p} \oplus \mathbb{T}_{a'_{p}} : U \cap U_{p} \rightarrow (L(n+m); \mathbb{R})$
 $\pi \mapsto \begin{pmatrix} \mathbb{T}_{a_{p}}(\pi) & 0 \\ 0 & \mathbb{T}_{a'_{p}}(\pi) \end{pmatrix}$
for 4) recall $\mathcal{T}_{n} = \{(\mathbb{R}_{i}) \in \mathbb{R}_{i}^{n} \times \mathbb{R}^{n+i}: v \in \mathbb{R}_{i}^{n}$
 $\Psi_{i} \otimes \mathcal{T}_{a_{i}} \otimes \mathbb{H}^{i}(\mathbb{R}_{i}^{n}; \mathbb{Z}_{i_{2}})$ for all $n$$

note:
$$\mathbb{RP}' \hookrightarrow \mathbb{RP}^2 \hookrightarrow ... \hookrightarrow \mathbb{RP}''$$

let $\mathbb{RP}^{\infty} = \lim_{n \to \infty} \mathbb{RP}^n = \bigcup \mathbb{RP}^n$
we also get \mathcal{V} oren \mathbb{RP}^{∞} and $\mathcal{V} \Rightarrow \mathbb{W}(\mathcal{V})_{\neq 0}$
 $\mathbb{W}(\mathcal{V})_{\neq 0}$
 $\mathbb{W}(\mathcal{V})_{\neq 0}$ is $\mathbb{RP}^n \longrightarrow \mathbb{RP}^m$ we have
 $\mathcal{V}'(\mathcal{V}_m) = \mathcal{V}_n$
so if $\mathbb{W}(\mathcal{V}) \neq 0$ then true $\mathcal{V} \mathcal{V}_n$
 \mathcal{V} show $\mathbb{RP}' = S'$ and $\mathcal{V}_r = \inf \operatorname{fix} \mathbb{P}$ million
 $\mathbb{R} \to \mathcal{V}_r$
 \mathcal{V} is non-orientable
 \mathcal{V} from above $\mathbb{W}(\mathcal{V}_r) \neq 0$
 $\mathbb{NO}(\mathbb{E})$: We have already shown \mathbb{W}_r sotisfies \mathbb{N}, \mathbb{C} , \mathbb{P} .
So to prove theorem just need \mathbb{P} uniqueness
before we do this let's consider some consequences!
 \mathbb{P}

i) if E, and Ez are isomorphic then $w_i(E_i) = w_i(E_2)$ $\forall i$ (by property 1))

on immension and still have

$$TM \oplus V(M) = f^* TR^k = M \times R^k$$

50
$$W(E) \cup W(E') = W(trivial) = 1$$

 $W(E') = (W(E))^{-1}$
 $= (1 + (W_1(E) + W_2(E) + ...))^{-1}$
 $(1 + \chi)^{-1} = 1 - \chi + \chi^2 - ...$
 $= (1 - (W_1(E) + W_2(E) + ...) + (W_1(E) + W_2(E) + ...)^2$
 $- (W_1(E) + W_2(E) + ...)^2 - ...)$
 $= 1 - W_1(E) + (W_1^2(E) - W_2(E))$
 $order 2$
 $+ (-W_1^3(E) + 2W_1(E) \cup W_2(E) - W_3(E) + ...)$
 $order 3$

So
$$w_{i}(E') = -w_{i}(E)$$

 $w_{2}(E') = w_{i}^{2}(E) - w_{2}(E)$
 $w_{3}(E) = -w_{i}^{3}(E) + 2w_{i}(E) + w_{3}(E) - w_{3}(E)$
:
example: $5^{n} \in \mathbb{R}^{n+1}$ $v(s^{n}) = 5^{n} \times \mathbb{R}$
so $w(Ts^{n}) = (w(v(s^{n})))^{-1} = 1$
 $v_{i}(Ts^{n}) = 0 \quad \forall i = 0$ we know for ith since

1200 \$ 0,1

So can't distinguish
$$T S^{n}$$
 from
 $S^{n} \times \mathbb{R}^{n}$ using $S - W$ classes
(but note, e.g. TS^{2} not trivial since
it has no nonzero section)
recall $H^{i}(\mathbb{R}P_{i}^{n}; \mathcal{U}_{2}) \cong \begin{cases} \mathcal{U}_{2} & 0 \le t \le n \\ 0 & 0 \end{cases}$
in fact $H^{*}(\mathbb{R}P_{i}^{n}; \mathcal{U}_{2}) \cong \begin{cases} \mathcal{U}_{2} & 0 \le t \le n \\ 0 & 0 \end{cases}$
in fact $H^{*}(\mathbb{R}P_{i}^{n}; \mathcal{U}_{2}) \cong \begin{cases} \mathcal{U}_{2} & 0 \le t \le n \\ 0 & 0 \end{cases}$
 $polynomials in a up cost in \mathcal{U}_{2} and $a^{k=0}$ for $k > n$
 $lemma 7:$
 $W(T\mathbb{R}P^{n}) = (1+a)^{n+i} = 1 + {n+i \choose 2} a + {n+i \choose 2} a^{n} + {n+i \choose n} a^{n}$
 $in H^{*}(\mathbb{R}P^{n}; \mathcal{U}_{2})$
 $example s: W(T\mathbb{R}P^{2}) = 1 + a + a^{2}$
 $W(T\mathbb{R}P^{3}) = 1$ $(1 + 4a - 6a^{2} + 4a^{3})$$

$W(TRPY) = 1 + a + a^4$

6r8: w(TRPM)=1 n+1 is a power of 2 so if n+1 not a power of 2 then TRPM is not trivial Proof:

 $recall modulo Z (a+b)^{2} = a^{2} + b^{2}$ $\therefore (1+a)^{2^{2}} = 1 + a^{2^{2}}$

So if
$$(n+1) = 2^{2r}$$
 then

$$w(TRP^{n}) = (i+a)^{n+1} = i+a^{n+1} = i$$
if $n+1 = 2^{r}m$ with m odd $m>1$, then

$$w(TRP^{n}) = (i+a)^{n+1} = ((i+a)^{2n})^{n}$$

$$= (i+a^{2r})^{n} = i+ma^{2r} + \frac{n(n-2)}{2}a^{2-2r} + \dots$$

$$\pm i$$
to see last equality recall $\binom{n+1}{1}$ is given by Pascals
triangle

$$i^{1} = \frac{1}{2}i^{1} + mod 2 \text{ is } i^{1} = \frac{1}{2}i^{1} + \frac{1}{2}$$

(w(TRP")) = 1+0+02+ ... +a"-1 thus if there is an immersion of RP2 in R2+k then w(y(RP2))= 1+9+ ... +92 2 -1 so dim of fibers of RP2 is at least 2'-1 but this is k we are left to prove lemma ? for this recall $\mathcal{T} = \{ (k, v) \in \mathbb{R}^{p} \times \mathbb{R}^{n+1} : v \in L \}$ 50 $\mathcal{Y}_n^{\perp} = \{ \mathcal{U} \in \{x\} \times \mathbb{R}^{n+1} \mid \mathcal{U} \perp (\mathcal{Y}_n)_x \text{ for } x \in \mathbb{R}^{p^n} \}$ Now $W(\mathcal{X}_{n}^{\perp}) = (W(\mathcal{X}_{n}))^{-1} = (1+q)^{-1} = (1+q+\ldots+q^{-1})$ lemma 9: $TRP^{n} \cong Hom(\mathcal{S}_{n}^{\prime}, \mathcal{S}_{n}^{\perp})$ Proof: recall] an involvtion i: Rn+1 -> Rn+1: x -> x and $RP^n = \frac{5^n}{x - i(x)}$ 50 9: 5" → RP" is a 2-fold cover with deck transform i

> <u>note</u>: $dq_x(v) = dq_{-x}(-v)$ since i(x) = -x and $di'_x(v) = -v$

dix -

: tangent vectors to RP are the same as pairs {(x,v), (-x,-v)} with $\chi \cdot \chi = 0$ and $\chi \cdot \upsilon = 0$ let l = span(x)the pair above is determined by a linear map $f: L \rightarrow L^{\perp}$ (given vel=Tx 5" then f:L-)L':x=v get same map if you take - vel = T_s" and given $f: L \to L^{\perp}$ let x be a unit elt in L and v= f(x) this gives a well-defined {(x,v), (-x,-v)} in T_RP") 50 clearly T RP" = Hom (Vn, Vn) exercise: Show this works on the level of bundles too Hint: Consider local trivializations

Proof of lemma 7: from lemma 9 we see

$TRP^{n} \cong Hom(\mathcal{V}_{n}, \mathcal{V}_{n}^{\perp})$

now note Hom (Vn, Vn) is a line bundle over IRP" and $\sigma: \mathbb{R}^{p^n} \longrightarrow Hom (\mathcal{Y}_n, \mathcal{Y}_n) : \chi \mapsto \mathcal{U}: (\mathcal{Y}_n)_{\chi} \rightarrow (\mathcal{Y}_n)_{\chi}$ is a non zero section <u>exercise</u>: So Hom (Vn, Vn) = RP" × R (in general a rank n vector bundle E over M is trivial ∃n sections s,...,sn St. S, (x), ..., S, (X) spans Ex for all XEM) exercise: How (Sn, 81) & How (Sn, Sn) = How (Yn, 7 + 0 Kn) : Itom $(\mathcal{T}_n, \mathcal{T}_n^{\perp}) \oplus \mathcal{E}_i = Hom (\mathcal{T}_n, \mathcal{T}_n^{\perp} \oplus \mathcal{T}_n)$ trivial rank 1 trivial rank nel bundle 2 bundle

Prencise: 1) How $(\mathcal{V}_{n}, \mathcal{E}^{n\pi'}) \cong Hom(\mathcal{V}_{n}, \mathcal{E}') \oplus ... \oplus How(\mathcal{V}_{n}, \mathcal{E}')$ 2) How $(\mathcal{V}_{n}, \mathcal{E}') \cong \mathcal{V}_{n}$ <u>Hint</u>: fix a metric g on \mathcal{V}_{n} *define* $\phi_{g}: \mathcal{V}_{n} \to How(\mathcal{V}_{n}, \mathcal{E}')$ $\tau \mapsto g(\tau, \cdot)$ *thus TRP*ⁿ $\cong \mathcal{V}_{n} \oplus ... \oplus \mathcal{V}_{n}$ *nti times* and property 3) in Th $m \leq g(\mathcal{V} \otimes 5)$

 $W(TRP^{n}) = (W(\mathcal{V}_{n}))^{n+1} = (1+q)^{n+1}$

Bounding Manifolds [all manifolds connected] given a closed manifold M of dimension n and non-negative integers 1, in st. 2, +...+ 1 = n then Wi(TM) V... UW (TM) is in H^{(M}; Z/2) recall from algebraic to pology Hn (M, Z/2) = Z/2 let [M] be a generator (called fundamental class) we call $V_{\eta}(TM) \cup \dots \cup T_{\eta}(TM)(EM) \in \mathbb{Z}_{12}$ a Steifel-Whitney number of M exercise: the steifel-Whitney numbers of \mathbb{R}^{p^2} are 1 and 0 \mathbb{R}^{p^3} are 0 Rpⁿ are? Th= 10: Pontrjagin If M is the boundary of a compact manifold W then all the Steifel-Whitney numbers are zero example: So RP" does not bound any compact

3-manifold (oriented or not)!

and if Σ is any oriented surface since $Z = T M^3$ we have all Steifel-Whitney

numbers are zero

Proof: recall we have a fundamental class [w] = Hnei(W, M) and [M] = Hn(M) moreover in L.E.S. of pair $\begin{array}{c} H_{n+1}(w, m) \xrightarrow{\partial} & H_n(m) \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ and is cohomology we have $H^{n}(M) \xrightarrow{\delta} H^{n}(W,M)$ and for a & H" (M) 5 generalize Stokes The $\delta \propto [h] = \alpha (\partial [h]) \forall [h] \in H_{n+1}(W,M)$ now fixing a Riemannian metric on W we see $V(M) = M \times IR = \varepsilon'_{M}$ SO TWIM = TM DEI so $w(Tw|_{M}) = w(TM)$ 1.e. $1^*(w(Tw)) = w(Tm)$ $i: M \rightarrow w$ inclusion the L.E.G. of a pair gives $H^{n}(w) \xrightarrow{i^{*}} H^{n}(w) \xrightarrow{S} H^{n+i}(w, M)$

so for any Win ... Win St. Win ... UN EH" (w) we have $S(w_1, v \dots v w_k) = D$ $\begin{array}{l} \ddots & \psi_{n_{1}} \cup \ldots \cup \psi_{n_{h}} \left([m] \right) = \psi_{n_{1}} \cup \ldots \cup \psi_{n_{h}} \left(\partial [w] \right) \\ &= S \left(\psi_{n_{1}} \cup \ldots \cup \psi_{n_{h}} \right) \left([w] \right) = 0 \end{array}$ so all Steifel-Whitney numbers are O Fact (Thom): If all Steifel-Whitney numbers of Mare O then M is the boundary of some compact smooth manifold!

given 2 unoriented manifolds Mi and Mz we say they are <u>unoriented</u> cobordant IF 3 a compact manifold W with DW=M,UMz Corollary of Fact: -M. and Mz are unoriented cobordant they have the same Steifel-Whitney numbers

<u>Proof of Th^m5</u>: recall we only need to check Item 3) and uniquness

We start with uniqueness:
recall we have the universal line bundle
$$X_n$$

over $\mathbb{R}P^n$
 $T_n = \{(R, v) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} : v \in L\}$
and T over $\mathbb{R}P^\infty$
note 4) and 2) determine $w_i(T) = \begin{cases} 1 & t=0 \\ a & t=1 \\ 0 & t>1 \end{cases}$
in the next subsection we will show:
 $if \quad U \quad is \quad a \quad line \quad bundle \quad over \quad M \quad a$
 $paracompact \quad space$
then $\exists \quad a \quad map \quad f: \quad M \rightarrow \mathbb{R}P^\infty$
 $such that \quad f^*(S) = E$
 $(ve \quad will show \quad much \quad more !)$
 $\therefore 1) (and 2), t) \Rightarrow we know $w(E)$ for any
line $bundle !$
 $we \quad can \quad now \quad finish $uniqueness \quad by$
 $lemma \quad II \quad (splitting \quad Principle):$
 $given \quad Ur \quad there \quad exists \quad a \quad space $A \quad and$
 $map \quad f: A \rightarrow M \quad st.$
 $v \quad f^*E \quad is \quad a \quad direct \quad sum \quad of \quad line \quad bundles$$$$

z) f*: H*(M) → H*(A) is injective

since w(E) is determined by $w(F^{*}(E))$ and w (F*(E)) is determined by 1)-4) we are done with uniqueness! $\frac{e_{Xe_1(x' \le e_{i})}}{e_{i}} : i) Show \quad w(E \in E') = w(E) \cup w(E) : s$ true for line bundles 2) show this + lemmall = 3) in The Proof of lemma 11: induct on the dimension of the fiber of p:E=M dim = 1: nothing to show dim = 2: $|ef P(E) = projective bundle of E, f: P(E) \rightarrow M$ 12. in each fiber of E replace R' with RP' note: the transition maps ~: U, NU, -> GL(2; R) act on Rp' too so to E there is an associated RP-bundle P(E) = { lines in Ex (V× EM) 50 5'→ P(E)

Now consider $f^* E = \{(l,v) \in P(E) \times E : \pi(l) = p(e)\}$

 $let \quad \forall_{n} = \left\{ (l_{n}v) \in P(E) \times E : \quad \tau(e) = p(E) \right\}$ Crenuse: this is a line bundle over P(E) γ = { (l, n) ∈ f*E: r ⊥ l} So $\pi^* \mathcal{E} \cong \mathcal{F}, \oplus \mathcal{F}, \bot$ later we will see (maybe) H*(P(E1) is a free H*(M)-module via f*(a) u. $f^* \colon H^*(\mathcal{M}) \longrightarrow H^*(\mathcal{P}(\mathcal{E}))$ is injective now for n>2 let p: E=M be an R"-bundle an f:P(E) -> M be RP - bundle over M then as above $f^*E = \mathscr{V} \oplus \mathscr{V}^\perp$ but now by induction J F : A > P(E) 5.t. J * 8 = @ line landles (by induction) and F : H * (M) -> H * (A) injective so (fof) E= @ line bundles and $(\bar{f} \circ f)^* : H^*(M) \to H^*(A)$ injective

Remark: so we have seen Steifel-Whitney classes can be used to

i) obstruct k-trames over varios skoleta
ii) say when we can reduce the structure group e.g. w₁(E)=0 @ structure group reduces from O(n) to SO(n)
3) differentiate bundles
4) obstruct namersions and embeddings
5) obstruct bounding a compact and.

there are many more applications and similarly for C₁; (E) and p₁. (E)

example: if Pantrjagin numbers not O then 1) no orientation reversing diffeomorphism and z) does not bound an compact oriented mid eg. Op²ⁿ has no or " reversing diffeo. and does not bound an oriented mfd More: can prove both these with intersection pairings leg. Poincare duality)

C. <u>Classifying Spaces</u> 5 Grass Manign Recall Gnim = all n-dim'h subspaces in RM we have $G_{n,m} \subset G_{n,m+1}$ $50 G_n = \bigcup_n G_{n,m}$